Identification of Individuals with MCI via Multimodality Connectivity Networks

نویسندگان

  • Chong-Yaw Wee
  • Pew-Thian Yap
  • Daoqiang Zhang
  • Kevin Denny
  • Lihong Wang
  • Dinggang Shen
چکیده

Alzheimer's disease (AD), is difficult to diagnose due to the subtlety of cognitive impairment. Recent emergence of reliable network characterization techniques based on diffusion tensor imaging (DTI) and resting-state functional magnetic resonance imaging (rs-fMRI) has made the understanding of neurological disorders at a whole-brain connectivity level possible, providing new avenues for brain classification. Taking a multi-kernel SVM, we attempt to integrate these two imaging modalities for improving classification performance. Our results indicate that the multimodality classification approach performs better than the single modality approach, with statistically significant improvement in accuracy. It was also found that the prefrontal cortex, orbitofrontal cortex, temporal pole, anterior and posterior cingulate gyrus, precuneus, amygdala, thalamus, parahippocampal gyrus and insula regions provided the most discriminant features for classification, in line with the results reported in previous studies. The multimodality classification approach allows more accurate early detection of brain abnormalities with larger sensitivity, and is important for treatment management of potential AD patients.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Identification of MCI individuals using structural and functional connectivity networks

Different imaging modalities provide essential complementary information that can be used to enhance our understanding of brain disorders. This study focuses on integrating multiple imaging modalities to identify individuals at risk for mild cognitive impairment (MCI). MCI, often an early stage of Alzheimer's disease (AD), is difficult to diagnose due to its very mild or insignificant symptoms ...

متن کامل

Machine Learning Techniques for AD/MCI Diagnosis and Prognosis

In the past two decades, machine learning tools have been extensively applied for the detection of neurologic or neuropsychiatric disorders, especially Alzheimer’s disease (AD) and its prodrome, mild cognitive impairment (MCI). This chapter presents some latest developments in application of machine learning tools to AD and MCI diagnosis and prognosis. We will divide our discussion into single ...

متن کامل

Accurate Identification of MCI Patients via Enriched White-Matter Connectivity Network

Mild cognitive impairment (MCI), often a prodromal phase of Alzheimer’s disease (AD), is frequently considered to be a good target for early diagnosis and therapeutic interventions of AD. Recent emergence of reliable network characterization techniques have made understanding neurological disorders at a whole brain connectivity level possible. Accordingly, we propose a network-based multivariat...

متن کامل

Resting-State Multi-Spectrum Functional Connectivity Networks for Identification of MCI Patients

In this paper, a high-dimensional pattern classification framework, based on functional associations between brain regions during resting-state, is proposed to accurately identify MCI individuals from subjects who experience normal aging. The proposed technique employs multi-spectrum networks to characterize the complex yet subtle blood oxygenation level dependent (BOLD) signal changes caused b...

متن کامل

Graph theoretic analysis of structural connectivity across the spectrum of Alzheimer's disease: The importance of graph creation methods

Graph theory is increasingly being used to study brain connectivity across the spectrum of Alzheimer's disease (AD), but prior findings have been inconsistent, likely reflecting methodological differences. We systematically investigated how methods of graph creation (i.e., type of correlation matrix and edge weighting) affect structural network properties and group differences. We estimated the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention

دوره 14 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2011